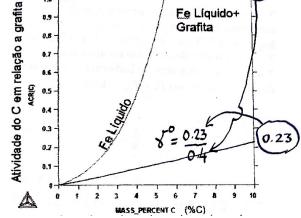

DURAÇÃO: 3,5h ESCOLHA ENTRE A QUESTÃO 4 E A 5. <u>BONUS</u>: SE FIZER AMBAS <u>SEM EXCEDER O TEMPO</u>, A MELHOR SERÁ APROVEITADA.

- 1. O gráfico apresenta a atividade do carbono (em relação a grafita) em misturas Fe+C a 1600°C. 1.1 Obtenha graficamente o coeficiente da Lei de Henry, explicando seu procedimento. 1.2 Explique o comportamento da atividade do C a partir de aproximadamente 5,5% na mistura.
- 1.1 A Lei de Henry se aplica a soluções diluídas. Logo, o $\gamma_{\scriptscriptstyle C}^{\scriptscriptstyle 0}=\frac{a_{\scriptscriptstyle c}}{X_{\scriptscriptstyle C}}$ no ponto $X_{\scriptscriptstyle C}=0$.

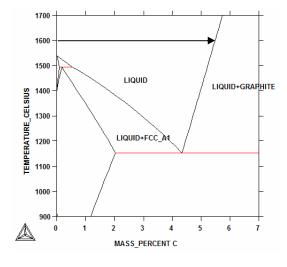
A medida que se calcula com valores obtidos com $X_C > 0$ obtém-se valores de $\gamma_C \neq \gamma_C^0$.

Xc Fração molar de C



Tentando tirar uma tangente no ponto zero, obteve-se os valores

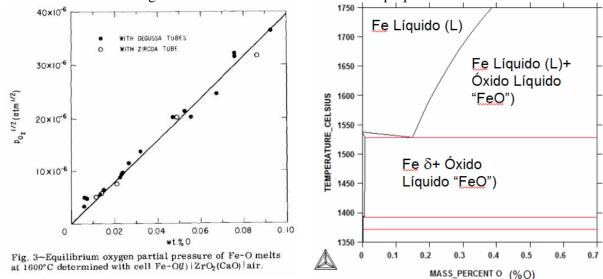
indicados:
$$\gamma_C^0 = \frac{a_c}{X_C} = \frac{0.23}{0.4} = 0.575$$



 Na correção da prova foram aceitos valores bastante diferentes, desde de que, conceitualmente, a Lei de Henry estivesse sendo aplicada.

ERROS COMUNS:

1) Usar $\gamma_C^0 = \frac{a_c}{\%C}$ 2) Tomar dois valores para concentrações "altas" de C e fazer $\gamma_C^0 = \frac{\Delta a_c}{\Delta X_C}$

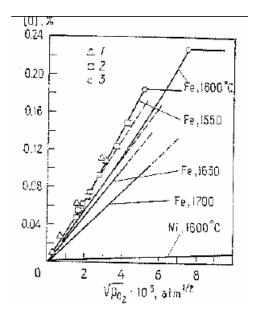

1.2 A atividade do carbono aumenta a medida que mais carbono se dissolve no ferro líquido. A cerca de 5,5% (em peso) o líquido é saturado em carbono e começa a formação de grafita (entrase no campo de duas fases do diagrama Fe-C. Neste ponto a solução líquida Fe-C está em equilíbrio com grafita, o estado padrão escolhido para a atividade do C, logo a atividade do C será unitária ($a_C = 1$).

ERROS COMUNS:

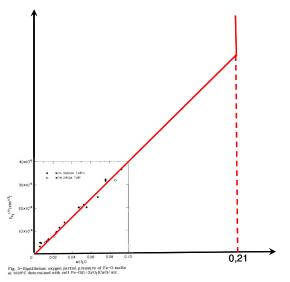
1a Verificação de Refino dos Aços I Fevereiro 2013 EEIMVR-UFF Sem consulta

- 1) A Lei de Raoult se aplica quando a fração molar do soluto tende a 1, isto é, o soluto passa a ser o solvente. $X_i \to 1$ $\frac{a_i}{X_i} \to 1$. Observe que não é o caso neste sistema pois:
- (a) $X_C \to 1\,\text{N\~AO}$ é verdadeiro. Isto é, estamos muito longe de ter uma solução em que o carbono seja o solvente e o ferro um soluto diluído!! (b) A atividade de C é MUITO DIFERENTE de X_C , próximo a saturação.

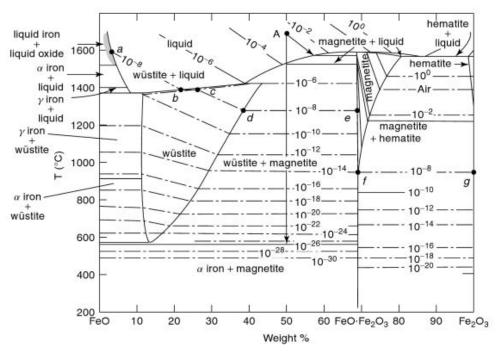
2. A Figura abaixo apresenta medidas de pressão de oxigênio em equilíbrio com liquido Fe+O a 1600°C. 2.1 Observando o gráfico verifique se a Lei de Sievert é seguida JUSTIFICANDO a sua resposta. 2.2 Combine a informação desta figura com o "fragmento" do diagrama de equilíbrio Fe+O fornecido e estenda a Figura até 0.35%O no sistema Fe+O. Explique.


2.1 A Lei de Sievert estabelece que os gases se dissolvem atomicamente nos metais e que, portanto, para gases diatômicos, existe uma proporcionalidade entre a concentração dissolvida e a RAIZ QUADRADA da pressão do gás. No caso do oxigênio, $\%\underline{O} = k\sqrt{P_{O_2}}$. No gráfico, observa-se esta proporcionalidade, logo, a Lei de Sievert é seguida.

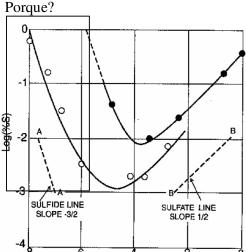
NOTA: O valor do constante da Lei de Sievert para o <u>O</u> no Fe NÃO é, exatamente 2621. Este foi um valor dado em sala, derivado de dados experimentais tão bons (ou tão ruins) quanto os da figura.


2.2) O diagrama Fe-O, a direita, mostra que, a 1600C, o ferro líquido fica saturado em oxigênio com cerca de 0.21% de oxigênio dissolvido no ferro. Logo, este valor nunca será excedido, a esta temperatura, pois o "FeO" se torna mais estável que a solução. Logo, mesmo aumentando-se a pressão parcial do oxigênio sobre o ferro, não se conseguirá dissolver mais O no ferro.

Quando se tem duas fases em equilíbrio em um sistema binário (Fe-O) (ferro líquido e FeO) o potencial químico dos elementos é constante.


Isto foi visto em sala de aula e no exercício que mostra %O em função da $\sqrt{P_{O_2}}$.

O diagrama da prova, entretanto está plotado com os eixos alternados em relação ao diagrama mostrado em sala.



NOTA: Embora não seja parte da questão, o diagrama abaixo é interessante pois mostra que, nos campos bifásicos, a Po2 é sempre constante (Infelizmente, o campo Fe(I)+"FeO" só aparece parcialmente, pois o diagrama é FeO-Fe2O3, isto é, COMEÇA em 50% at de O!!

3.A Figura mostra o teor de S que passa para duas escórias diferentes em condições controladas, variando apenas o potencial de oxigênio a 1600°C. 3.1 Explique em que região do gráfico se passa a de-S em condições redutoras. 3.2 Escreva a reação da de-S em condições redutoras e explique os fatores termodinâmicos que favorecem esta reação. 3.3 Uma aciaria adiciona Al durante o processo de de-S e

outra não. As duas começam a de-S com o mesmo nível de desoxidação. Qual deve ser mais efetiva?

Log Po. (atm.)

3.1 Marcada no gráfico, para fins de "gabarito".

NOTA: Analisando corretamente, saberíamos, da primeira questão, por exemplo, que o Fe metálico liquido só existe para Po2 inferiores a cerca de 10⁻⁸ atm, o que cairia "fora" do gráfico. Foi considerada correta a resposta que indicou a região de formação de sulfeto (sulfide), ao invés de sulfato (sulfate).

$$3.2 \text{ S} + \text{O}^{-2} = \text{S}^{-2} + \text{O}$$

Favorecem esta reação, termodinamicamente:

- a) Aumento da atividade do íon O⁻² através do aumento da basicidade.
- b) Diminuição da atividade do O através de condições

redutoras ou desoxidantes.

- c) Diminuição da atividade do S⁻² através de uma escória apropriada (com baixo coeficiente de atividade deste íon)
- d) Aumento da atividade do <u>S</u>, o que só é viável, neste caso, através de elementos que tenham interação com o S e aumentem sua atividade, sem aumentar a QUANTIDADE de S em solução. (ex. carbono, vide exemplo do gusa, em sala)
- 3.3 A adição de Al favorecerá a de-S baixando o teor de O dissolvido e/ou reagindo com \underline{O} o formado durante o processo de de-S.
 - 4. Deseja-se produzir um aço inoxidável superferrítico com 26% de Cr e 0.04% de C máximo. Dispõe-se de um forno capaz de atingir 0.005 atm de pressão, mínima. Assuma que todo o gás, nesta pressão, seja CO. 4.1 Qual seria a melhor atividade do óxido de cromo para este processo? 4.2 Usando esta atividade, qual a menor temperatura na qual é possível produzir este aço, (supondo que será preciso descarburar até o teor de C desejado: isto é, não é possível supor que usaremos matérias primas SEM C e somente misturaremos no forno).

A reação "global" que desejamos estudar será a competição do C e do Cr pelo oxigênio.

$$2\underline{Cr} + 3CO = 3\underline{C} + Cr_2O_3$$

- 4.1 Como não queremos oxidar o Cr, e sim o C, queremos evitar que esta reação "ande" para a direita. Logo, quanto mais alta a atividade dos produtos, melhor (Lei da ação das massas ou Princípio de Lê Chatelier). Logo, a melhor atividade do oxido de cromo será a máxima, no caso, 1.
- 4.2 Para obter a reação mencionada, precisamos combinar reações cujos dados termodinâmicos são conhecidos, da seguinte forma:

$$+1 \times 2Cr + 3/2 O_2 = Cr_2 O_3$$

$$-3 \times C + 2/2 O_2 = CO$$

$$+3 \times C = \underline{C}$$

$$-2 \times Cr = \underline{Cr}$$

$$2Cr + 3CO = 3C + Cr_2 O_3$$

1a Verificação de Refino dos Aços I Fevereiro 2013 EEIMVR-UFF Sem consulta

Usando os dados das tabelas de Turkdogan¹ (fornecidos na prova) tem-se:

	Coef	(delta H (J)	delta S (J)	
cr2o3		1	-1110300	-2	47.3
CO		-3	-114400		85.8
С		3	22594	4	2.26
cr		-2	19246	4	6.86
$\frac{Cr}{\Delta G^{0'}}$			-737810	-47	1.64

Desejamos determinar a temperatura mínima onde a reação ocorre. Como sabemos que, quanto MAIOR a temperatura, mais favorável é a oxidação do C (porque? Veja o ΔS das reações!) a temperatura mínima será aquela em que há equilíbrio. Qualquer temperatura SUPERIOR levará a oxidação do C (teores menores do que o especificado) sem oxidação do Cr.

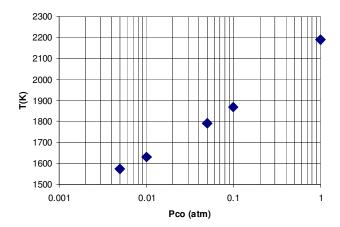
$$\Delta G = 0 = \Delta G^{0'} + RT \ln \frac{a_{Cr_2O_3} \% \underline{C}^3}{P_{CO}^3 \% \underline{C}r^2}$$

$$0 = \Delta H^{0'} - T\Delta S^{0'} + RT \ln \frac{a_{Cr_2O_3} \% \underline{C}^3}{P_{CO}^3 \% \underline{C}r^2}$$

$$-\Delta H^{0'} = T \left(-\Delta S^{0'} + R \ln \frac{a_{Cr_2O_3} \% \underline{C}^3}{P_{CO}^3 \% \underline{C}r^2} \right)$$

$$T = \frac{-\Delta H^{0'}}{\left(-\Delta S^{0'} + R \ln \frac{a_{Cr_2O_3} \% \underline{C}^3}{P_{CO}^3 \% \underline{C}r^2} \right)}$$

A temperatura assim calculada é de 1572K


NOTAS:

1) Como esta temperatura é inferior ao ponto de fusão do ferro e, possivelmente, também ao do aço que estamos produzindo, o resultado é "limitado". Indica que, se existir liga líquida a partir desta temperatura (porque usamos os dados termodinâmicos para dissolver Cr e C no ferro líquido) é possível produzir o aço.

2) Alguns alunos observaram, corretamente, que esta temperatura é baixa. Isto se deve ao fato de que estamos trabalhando sob vácuo, que realmente favorece muito a de-C. Observe o efeito da PCO sobre esta temperatura, no gráfico abaixo.

¹ Fruehan R, editor. Making, Shaping, and Treating of Steel, Steelmaking and Refining Volume. 11th Edition. Pittsburgh PA: AISE Steel Foundation; 1998. Capitulo 2, E. Turkdogan.

1a Verificação de Refino dos Aços I Fevereiro 2013 EEIMVR-UFF Sem consulta

- 5. Em um conversor, oxigênio é soprado para oxidar o carbono. Assuma que existe equilíbrio no conversor no final do sopro, tanto entre o metal e o gás como entre o metal e a escória. No final do sopro, a 1670°C, a concentração de FeO na escória é de 26% e sua atividade é igual a 0,34.
- 5.1) Qual o teor de oxigênio no aço em equilíbrio com este FeO da escória?
- 5.2) Qual o menor teor de carbono que pode ser obtido, no aço, nestas condições, supondo a pressão do interior do forno $P_T = P_{CO} = 1 atm$.
- 5.1 O primeiro equilíbrio de interesse é Fe+O = FeO. Para obter a reação mencionada, precisamos combinar reações cujos dados termodinâmicos são conhecidos, da seguinte forma:

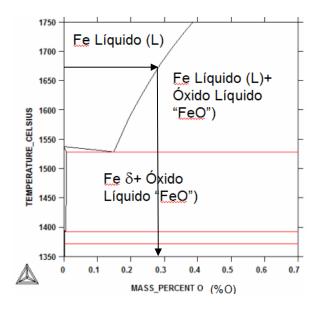
$$\begin{aligned} +1\times Fe + 1/2\,O_2 &= FeO \\ -1\times & 1/2\,O_2 &= \underline{O} \\ Fe + \underline{O} &= FeO \end{aligned}$$

Usando os dados das tabelas de Turkdogan¹ (fornecidos na prova) tem-se: coef. deltaH (J) deltaS (J)

	coef.	d	eltaH (J)	deltaS (J)
FeO		1	-225500	-41.3
<u>1/2</u> O2		-1	-115750	4.63
$\Delta G^{0'}$			-109750	-45.93

A atividade do ferro pode ser considerada 1 porque o aço é, praticamente, só ferro e, aqui, aplica-se a Lei de Raoult. $X_{Fe} \approx 1 \rightarrow a_{Fe} \approx 1$ (poderíamos calcular o valor de X_{Fe} e depois fazer $a_{Fe} = X_{Fe}$ mas a diferença no resultado será mínima.

$$\Delta G = 0 = \Delta G^{0'} + RT \ln \frac{a_{FeO}}{a_{Fe} \% \underline{O}}$$


$$\frac{-\Delta G^{0'}}{RT} = \ln \frac{0.34}{1 \times \% \underline{O}}$$

$$\% \underline{O} = 0.34 \times \exp \left(\frac{-109750 + 45.93 \times (1670 + 273)}{8.314 \times (1670 + 273)} \right)$$

$$\% O = 0.096\%$$

NOTA: Podemos verificar que este valor está razoável pois a solubilidade do oxigênio, para FeO puro, está no diagrama Fe-O

$$\% \underline{O} = \exp\left(\frac{-109750 + 45,93 \times (1670 + 273)}{8,314 \times (1670 + 273)}\right)$$
$$\% \underline{O} = \frac{0,096\%}{0.34} = 0,28\%$$

5.2 O limite de descarburação será o ponto em que se atinge este teor de oxigênio pois, a partir daí, não seremos mais capazes de oxidar o C e oxidaremos o Fe.

Logo, precisamos estudar a reação $\underline{C}+\underline{O}=CO$ (supondo que a temperatura é suficientemente alta para que o CO_2 seja irrelevante- o que realmente é uma boa aproximação em aciaria):

$$+1 \times C + 1/2 O_2 = CO$$

$$-1 \times 1/2 O_2 = \underline{O}$$

$$-1 \times C = \underline{C}$$

$$\underline{C} + O = CO$$

Para %O=0,096 o menor carbono possível será, portanto: 0,026%

DADOS NA PROVA ORIGINAL

Massas Atômicas

Fe 55,85	C 12	O 16	S 32	Cr 52
Mn 55	Si 28	P 31	Al 27	Ca 40

 $\Delta G_i^{1\%}$ e $\gamma_{i,1873K}^0$ para vários solutos i no Ferro Líquido.

Table 2.8 Free Energies of Solution in Liquid Iron for 1 mass %: (g) gas, (l) liquid, (s) solid. From Ref. 71.

(S) Solid. From	II Rei. 71.	
Element i	$\gamma^{\circ}_{\ i}$	$\Delta G_{\rm s}$, Jmol-1
AI(I)	0.029	-63,178 - 27.91T
C(gr)	0.57	22,594 - 42.26T
Co(I)	1.07	1,004 - 38.74T
Cr(s)	1.14	19,246 - 46.86T
Cu(l)	8.60	33,472 - 39.37T
$^{1/_{2}}H_{2}(g)$	- 2	36,377 + 30.19T
Mg(g)		-78,690 + 70.80T
Mn(l)	1.30	4,084 - 38.16T
$\frac{1}{2}N_{2}(g)$	-	3,599 + 23.74T
Ni(l)	0.66	-20,920 - 31.05T
$1/_{2}O_{2}(g)$	-	-115,750 - 4.63T
$1/_{2}P_{2}(g)$	- 2	-122,173 - 19.25T
1/2S2(g)	- .:	-135,060 + 23.43T
Si(I)	0.0013	-131,500 - 17.24T
Ti(s)	0.038	-31,129 - 44.98T
V(s)	0.10	-20,710 - 45.61T
W(s)	1.20	31,380 - 63.60T
Zr(s)	0.043	-34,727 - 50.00T

Table 2.1 The Standard Free Energies of Formation of Selected Compounds from Compiled Thermochemical Data

Notations: < > solid, {} liquid, () gas, d decomposition, m melting, b boiling.

	$\Delta G^{\circ} = \Delta H^{\circ} - \Delta S^{\circ} T$				
	−ΔH°	-∆S°	∆G°	Temp.Range	
	kJ mol ⁻¹	J mol-¹K-¹	±kJ	°C	
$\langle AI \rangle = \{AI\}$	-10.8	11.5	0.2	660m	
2 $\{AI\} + \frac{3}{2}(O_2) = \langle AI_2O_3 \rangle$	1683.2	325.6	8	660–1700	
$\{AI\} + \frac{1}{2}(N_2) = \langle AIN \rangle$	328.3	115.5	4	660–1700	
$ + 2(H_2) = (CH_4)$	91.0	110.7	2	25–2000	
$ + 1/2(O_2) = (CO)$	114.4	-85.8	2	25–2000	
$ + (O_2) = (CO_2)$	395.3	-0.5	2	25–2000	
$ \begin{aligned} & = \{Ca\} \\ & \{Ca\} = (Ca) \\ & \{Ca\} + 1/2(O_2) = \\ & \{Ca\} + 1/2(S_2) = \\ & + = \\ & + (CO_2) = \\ & + = \\ & + = \end{aligned} $	-8.5 153.6 900.3 548.1 19.1 161.3 118.8 92.5	7.7 87.4 275.1 103.8 - 17.2 137.2 - 11.3 2.5	0.5 0.5 6 4 8 4 10	842m 842-1500b 842-1500b 842-1500b 25-1605m 25-880d 25-1700 25-1540m	
$<$ Cr> = {Cr}	-16.9	7.9	2	1857m	
2 <cr> + $^{3}/_{2}(O_{2}) = <$Cr$_{2}O_{3}>$</cr>	1110.3	247.3		900–1650	
$ \begin{array}{l} =\{Fe\}\\ 0.947+ 1/2(O_2)=\\ \{Fe\}+ 1/2(O_2)=\{FeO\}\\ 3+ 2(O_2)=\\ 2+ 1/2(O_2)=+ 1/2(S_2)=\\ \{Fe\}+ 1/2(O_2)+=\\ 2+= \end{array} $	-13.8	7.6	1	1537m	
	263.7	64.3	4	25–1371m	
	225.5	41.3	4	1537–1700	
	1102.2	307.4	4	25–1597m	
	814.1	250.7	4	25–1500	
	154.9	56.9	4	25–988m	
	330.5	80.3	2	1537–1700	
	36.2	21.1	4	25–1220m	
$(H_2) + \frac{1}{2}(O_2) = (H_2O)$	247.3	55.9	1	25–2000	
$(H_2) + \frac{1}{2}(S_2) = (H_2S)$	91.6	50.6	1	25–2000	
$\frac{3}{2}(H_2) + \frac{1}{2}(N_2) = (NH_3)$	53.7	32.8	0.5	25–2000	
$1/2(S_2) + (O_2) = (SO_2)$	361.7	72.7	0.5	25–1700	
$\langle Si \rangle = \{Si\}$	-49.3	30.0	2	1412m	
$\{Si\} + 1/2(O_2) = (SiO)$	154.7	–52.5	12	1412–1700	
$\langle Si \rangle + (O_2) = \langle SiO_2 \rangle$	902.3	172.9	12	400–1412m	
$\{Si\} + (O_2) = \langle SiO_2 \rangle$	952.5	202.8	12	1412–1723m	